Molecular characterization and regulation of the angiotensin-converting enzyme type 2/Angiotensin-(1-7)/MAS receptor axis during the ovulation process in cattle

Author:

Tonellotto dos Santos Joabel1,Ferreira Rogério1,Gasperin Bernardo Garziera1,Siqueira Lucas Carvalho1,de Oliveira João Francisco1,Santos Robson AS2,Reis Adelina M2,Gonçalves Paulo Bayard1

Affiliation:

1. Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil

2. Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil

Abstract

The objective of this study was to characterize the profiles of Ang-(1-7), MAS receptor, ACE2, NEP and PEP during the ovulatory process in cattle. For this study, 40 synchronized cows with follicular diameter ≥ 12 mm were ovariectomized at different time-points (0, 3, 6, 12 and 24 h) after i.m. application of gonadotropin-releasing hormone (GnRH) to induce a luteinizing hormone surge. Follicular fluid was collected for measuring Ang-(1-7) by radioimmunoassay. Theca and granulosa cells were isolated from the preovulatory follicles to evaluate the gene expression of MAS receptor, ACE2, NEP and PEP by qRT-PCR assay. Cross-contamination between theca and granulosa cells was tested by RT-PCR to detect cytochrome P450 aromatase (CYP19A1) and 17α-hydroxylase (CYP17A1) mRNA. Ang-(1-7) levels were constant until 12 h and then increased ( p < 0.05) at 24 h after GnRH. Messenger RNA expression of MAS, ACE2, NEP and PEP was detected in theca and granulosa cells at all time-points after GnRH. In granulosa cells, ACE2, NEP and PEP were differentially expressed after GnRH treatment ( p < 0.05). In conclusion, the Ang-(1-7), MAS receptor, ACE2, NEP and PEP profiles in preovulatory follicles indicate that Ang-(1-7) plays a role in the regulation of the ovulatory process in cattle.

Publisher

Hindawi Limited

Subject

Endocrinology,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3