Testosterone downregulates angiotensin II type-2 receptor via androgen receptor-mediated ERK1/2 MAP kinase pathway in rat aorta

Author:

Mishra Jay S1,Hankins Gary D1,Kumar Sathish1

Affiliation:

1. Division of Reproductive Endocrinology, University of Texas Medical Branch at Galveston, Texas, USA

Abstract

Introduction: Blood pressure is lower in females than males. Angiotensin II type-2 receptor (AT2R) induces vasodilation. This study determined whether sex differences in vascular AT2R expression occur and if androgens exert control on AT2R expression in the vasculature. Methods: AT2Rs in the aorta of male and female Sprague-Dawley rats were examined following alteration in androgen levels by gonadectomy or hormone supplementation. Results: AT2R mRNA and protein expression levels were lower in the aortas of males than females. In males, testosterone withdrawal by castration significantly elevated AT2R mRNA and protein levels and testosterone replacement restored them. In females, increasing androgen levels decreased AT2R mRNA and protein expression and this was attenuated by androgen receptor blocker flutamide. Ex vivo, dihydrotestosterone downregulated AT2R in endothelium-intact but not endothelium-denuded aorta. Dihydrotestosterone-induced AT2R downregulation in isolated aorta was blocked by an androgen receptor antagonist. Furthermore, blockade of ERK1/2 but not p38 MAP kinase or TGFβ signaling with specific inhibitors abolished dihydrotestosterone-induced AT2R downregulation. Conclusion: Androgens downregulate AT2R expression levels in aorta, in vivo and ex vivo. The androgen receptor-mediated ERK1/2 MAP kinase-signaling pathway may be a key mechanism by which testosterone downregulates AT2R expression, implicating androgens’ contributing role to gender differences in vascular AT2R expression.

Publisher

Hindawi Limited

Subject

Endocrinology,Internal Medicine

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3