17β-Estradiol restores excitability of a sexually dimorphic subset of myelinated vagal afferents in ovariectomized rats

Author:

Qiao Guo-Fen12,Li Bai-Yan23,Lu Yan-Jie2,Fu Yi-Li1,Schild John H.3

Affiliation:

1. Department of Biomedical Devices and Engineering, School of Life Science, Harbin Technological University, Harbin, China;

2. Department of Pharmacology, Harbin Medical University, Harbin, China; and

3. Department of Biomedical Engineering, School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, Indiana

Abstract

We recently identified a myelinated vagal afferent subpopulation (Ah type) far more prevalent in female than male rats and showed that this difference extends to functionally specific visceral sensory afferents, baroreceptors of the aortic arch. Excitability of myelinated Ah-type afferents is markedly reduced after ovariectomy (OVX). Here we tested the hypothesis that 17β-estradiol can selectively restore excitability of these sex-specific vagal afferents. Acutely isolated vagal afferent neurons (VGN) from intact and OVX adult female rats were used with patch-clamp technique and current-clamp protocols to assess the effect of acute application of 17β-estradiol on neuronal excitability. At over physiologically relevant 17β-estradiol concentrations for rat (1–10 nM) excitability of myelinated Ah-type vagal afferents is restored to discharge frequencies comparable to those in intact females, albeit with some interesting differences related to burst and sustained patterns of neuronal discharge. Restoration of excitability occurs within 3 min of hormone application and is stereo specific, because 1,000 nM 17α-estradiol fails to alter excitability. Furthermore, activation of G protein-coupled estrogen receptor GPR30 with highly selective agonist G-1 similarly restores excitability of Ah-type afferents. The effectiveness of 17β-estradiol and G-1 is completely eliminated by application of high-affinity estrogen receptor ligand ICI-182,780. 17β-Estradiol conjugated with BSA is ∼70% as effective as 17β-estradiol alone in restoring Ah-type VGN excitability. These data support our conclusions that the cellular mechanisms leading to rapid restoration of neuronal excitability of myelinated Ah-type VGN after OVX occur, at least in part, via membrane-bound estrogen receptors. We contend that recovery of high-frequency discharge at physiologically relevant 17β-estradiol concentrations implies that this unique subtype of low-threshold myelinated vagal afferent may account for some of the sex-related differences in visceral organ system function. Sex differences in cardiovascular and gastrointestinal function and the potential role of GPR30 in modulation of sex-specific myelinated Ah-type vagal afferents are discussed.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3