Functionally graded cellular cores of sandwich panels fabricated by additive manufacturing

Author:

Garrido Silva B1,Alves F1ORCID,Sardinha M1ORCID,Reis L12ORCID,Leite M12,Deus A M23ORCID,Vaz M Fatima12ORCID

Affiliation:

1. IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

2. Departamento de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

3. CEFEMA, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Abstract

Functionally graded cellular materials, which combine cellular materials with a gradient of properties, have been recently investigated as cores of sandwich panels. The present work aims to evaluate the flexural properties of functionally graded cellular structures with a gradient of cell thickness on configurations recently proposed. The structures hexagonal honeycomb (Hr), lotus (Lt), and hexagonal honeycomb with Plateau borders (Pt) were designed with three different gradients of cell thickness. The parts were manufactured by material extrusion using FFF (Fused Filament Fabrication). To evaluate the mechanical properties, three-point bending tests were conducted, both experimentally and by numerical modelling, by means of the finite element method. The materials used were polylactic acid (PLA) and aluminum. Although experimental and numerical results exhibited some deviations, they revealed the same trends. The results showed that the stiffness and the absorbed energy of the graded Hr, Lt and Pt structures, made of PLA, are higher than such values for the regular hexagonal honeycombs. For the same gradient of cell thickness, the lotus structure tends to exhibit the highest stiffness and absorbed energy, while the hexagonal honeycomb arrangement achieves the largest value of strength. Graded aluminum specimens also attain higher values of stiffness, strength and absorbed energy in comparison with non-graded hexagonal honeycomb configurations. Thus, the use of gradients of cell thickness can promote structures with higher stiffness and absorbed energy, which may compete with the conventional structures of sandwich panel cores.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3