Crashworthiness analysis of a composite guardrail under impact loading

Author:

Mohammadi Iman1,Haghighi-Yazdi Mojtaba1,Safarabadi Majid1ORCID,Yousefi Armin1

Affiliation:

1. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

Road safety barriers prevent cars from deviating from the roads. Guardrails as common roadside safety barriers protect cars from dangers alongside the roads, such as steep slopes and trees, and redirect traffic from road hazards. Conventional guardrails are generally made of metal or concrete. Although steel guardrails absorb a high amount of crash energy by deformation, these types of guardrails have short lifecycles of less than 15 years. Due to their unique properties, composite materials are potential candidates to use as guardrails. The present study considers the three types of guardrails (steel, composite, and fiber metal laminate (FML)), and the crash model is developed according to standards. LS-DYNA software is employed to simulate and conduct the crash test In the first stage, impact simulation is performed on a carbon/epoxy composite plate. In the next step, impact simulation is performed on a metal fiber multilayer (FML) plate with carbon fiber and aluminum metal. Then, the crash test on the steel guardrail is completely simulated. These three stages are performed to verify the proposed model. In the next stage, the crash test for a carbon/epoxy composite guardrail is simulated, and the effect of different parameters is investigated. Finally, a crash test on the FML guardrail with carbon fibers and steel metal is simulated. Two FML samples with [CE/Steel/CE] layups are considered. The absorbed energy, specific energy, and acceleration severity index (ASI) for all different guardrails are obtained and compared to determine the optimum guardrail regarding energy absorption, mass, and ASI parameters. Results reveal that sample FML-B guardrail is the best of the three guardrail types, with the highest specific energy absorption and lower ASI parameter.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3