Metamaterial boat fenders with supreme shape recovery and energy absorption/dissipation via FFF 4D printing

Author:

Bodaghi MahdiORCID,Namvar NaserORCID,Yousefi ArminORCID,Teymouri Hadi,Demoly FrédéricORCID,Zolfagharian AliORCID

Abstract

Abstract In maritime transportation, a fender acts like a bumper to absorb the kinetic energy of a boat berthing against a jetty, pier wall, or other boats. They have high energy absorption and low reaction forces, preventing damage to boats and berthing structures. The aim of this paper is to introduce a novel conceptual design for a new class of lightweight boat-fendering systems with superior energy absorption/dissipation and shape recovery features. Different metamaterials with honeycomb, re-entrant, and re-entrant chiral auxetic patterns are designed in the form of boat fender panels, and their thermo-mechanical behaviors are analyzed experimentally and numerically. A finite element modeling (FEM) is developed to investigate the compressive behaviors of boat fenders. Some of designs are 4D printed by fused filament fabrication of shape memory polylactic acid polymers and then tested thermo-mechanically. A good correlation is observed between numerical and experimental results, supporting the FEM accuracy. Results reveal that proposed boat fenders have considerable energy absorption/dissipation along with the capability to fully recover plastic deformations by simply heating up. The excellent mechanical property recovery of the proposed boat-fendering system is also shown under cycling loadings. Due to the absence of similar conceptual designs, models, and results in the specialized literature, this paper is expected to be instrumental towards 4D printing novel boat fenders with supreme energy absorption/dissipation and shape recovery properties promoting sustainability.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3