Neural networks-based modeling of compressive stress in expanded polystyrene foams: A focus on bead size parameters

Author:

Pech-Mendoza Melvin I.1,Rodríguez-Sánchez Alejandro E.2ORCID,Plascencia-Mora Héctor1

Affiliation:

1. Departamento de Ingeniería Mecánica, Universidad de Guanajuato, Salamanca, Guanajuato, Mexico

2. Universidad Panamericana, Facultad de Ingeniería Álvaro del Portillo 49, Zapopan, Jalisco, Mexico

Abstract

Expanded polystyrene is used in diverse applications, notably for protective and structural purposes. Its cushioning and mechanical strength excel under compressive loads, especially when optimally designed. A key factor influencing its compressive stress is the initial density, which plays a significant role in determining the material’s mechanical properties. This aspect is primarily determined by the bead size distribution. Although there is a vast body of literature on modeling the stress response of expanded polystyrene, there is limited emphasis on predictions that account for this factor, which is also relevant for the manufacturing of the material. Recent literature has emphasized the capability of artificial neural networks in predicting the compressive behaviors of expanded polystyrene, incorporating various factors. In this study, artificial neural network models were used to predict the compressive stress responses of polystyrene foams, with a focus on bead size distribution parameters. Specimens of two distinct initial densities were examined using micrographs to identify bead diameters and distributions, which were then used as model inputs. Compression tests on these specimens were conducted at two different rates. The collected data facilitated the development of predictive models for the material’s compressive behavior. The model predictions closely match experimental findings, with error metrics showing deviations <3% compared to the experimental data. This highlights the utility of artificial neural networks in modeling the compressive behavior of polystyrene foams, particularly when bead size and related parameters are considered.

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3