Machine learning‐based time series analysis of polylactic acid bead foam extrusion

Author:

Shah Karim Ali1,Albuquerque Rodrigo Q.12,Brütting Christian1,Ruckdäschel Holger12ORCID

Affiliation:

1. Department Polymer Engineering University of Bayreuth Bayreuth Germany

2. Neue Materialien Bayreuth GmbH Bayreuth Germany

Abstract

AbstractUnderstanding the behavior of polymer melts during extrusion is essential for optimizing processes and developing new materials. However, analyzing the continuous data generated by an extruder poses significant challenges. This paper investigates the utility of machine learning in predicting melt pressure at the die plate in polylactic acid (PLA) bead foam extrusion, a critical parameter in the extrusion process. Utilizing a random forest (RF) model, we examine how various processing parameters influence melt pressure. By segmenting the data into time‐delayed intervals, we achieve accurate predictions. We present forecasts of melt pressure at the die for intervals of 5 s, 1 min, and 5 min, demonstrating particularly strong performance for the 5‐min forecast with a Mean Absolute Error (MAE) of 1.88 and the coefficient of determination ( score) of 0.90. By exploring time series data, our study demonstrates the effectiveness of the RF model and provides a foundation for more advanced and precise control strategies in polymer bead extrusion processes.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3