Optimization of friction stir welding parameters using multiple response surface methodology

Author:

Ghaffarpour Morteza1,Aziz Ahmad2,Hejazi Taha-Hossein3

Affiliation:

1. Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Islamic Republic of Iran

2. Department of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Islamic Republic of Iran

3. Department of Industrial Engineering and Management Systems, Amirkabir University of Technology (Tehran Polytechnic), Islamic Republic of Iran

Abstract

Improving quality in today’s complicated industrial systems is gaining more and more importance every day. Since applying these systems costs a lot, companies should try to offer the best outcomes and processes possible. One of the products most applied is Tailor Welding Blanks, which is widely used in automobile, aerospace, and other industries. One of the best methods of producing Tailor Welding Blanks is Friction Stir Welding. Using this technology, sheets dissimilar in material and thickness can be joined. In this paper, the possibility of welding thin sheets of 5083-H12 and 6061-T6 aluminum alloy by Friction Stir Welding with the thickness of 1.5 mm is examined. To detect the impact of Friction Stir Welding parameters, i.e. rotational speed (r/min), linear speed (mm/ min), shoulder diameter (mm), and tilt angle (°), a Box-Behnken design was used and using multiple Response Surface Methodology values of robust optimization of tensile strength and elongation were derived. The optimization and experiment results were then compared. The results of the comparison showed a good correspondence.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3