An easy-to-implement self-healing smart design for increasing impact strength and crashworthiness resistance of honeycomb sandwich structures

Author:

Güçlü Harun1ORCID,Osmanoğlu Serhat12,Hayırkuş Aslıhan1,Taş Oğuzhan1,Yazıcı Murat1

Affiliation:

1. Engineering Faculty, Automotive Engineering Department, Applied Mechanics and Advanced Materials Research Group (AMAMRG) Lab., Bursa Uludağ University, Nilüfer, Bursa, Turkey

2. Vocational School of Technical Sciences, Konya Technical University, Selçuklu, Konya, Turkey

Abstract

In this paper, the dynamic compression impact response of an aluminum honeycomb core filled with open-cell foams impregnated with self-healing liquid agents was investigated experimentally. Samples were subjected to a variety of impacts in order to determine healing time and self-healing performance. Three different sandwich specimens were developed to evaluate the effectiveness of self-healing. The sandwich specimens are designated as B (empty honeycomb core cells), S (only open-cell soft polyurethane foam-filled honeycomb core cells), and self-healing agent (SHA) (open-cell soft polyurethane foams impregnated with liquid self-healing agents). The test results were presented by considering the crashworthiness and healing efficiency criteria, and the impact characteristics of the samples were compared related to these criteria. After testing, the results demonstrated that the self-healing agent specimens had much fewer buckling deformation and displacement than their counterparts. Significant improvements were achieved in healing efficiencies and crashworthiness evaluation criteria. The peak load and the energy needed to attain peak load are considered healing efficiency criteria. Self-healing agent specimens reached 29.7% and 12.9% more peak loads, and in the energy absorbed up to peak loads 140% and 34.9% higher values than the B and S sandwiches. In the same samples, crushing strain features were acquired as 50% versus 66%, indicating less displacement in self-healing agent specimens than counterparts. The results indicated that an aluminum honeycomb sandwich structure that can heal itself after damage and recover impact characteristics remarkably could be produced practically.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Full-scale analysis of smart fluid-filled barrier technology: Numerical and experimental study of fixture configurations;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2023-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3