Impact resistance of short carbon fibre-carbon nanotube-polymer matrix hybrid composites: A stochastic multiscale approach

Author:

Ansari Reza1ORCID,Ahmadi Masoud1ORCID,Rouhi Saeed2

Affiliation:

1. Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran

2. Young Researchers and Elite Club, Langarud Branch, Islamic Azad University, Langarud, Guilan, Iran

Abstract

A multiscale approach is used here to investigate the impact properties of carbon fibre/carbon nanotube-reinforced polymer. For this purpose, the mechanical properties of the carbon nanotubes (CNTs) are obtained by molecular dynamics simulations. Then, they are included in the polyethene matrix, and the mechanical properties of CNT-reinforced polyethene are computed using a stochastic approach. Considering the CNT-reinforced polyethene as the matrix, the effect of adding the carbon fibres on its mechanical properties is investigated in the next step. Finally, utilizing a stochastic method, the macro-scale mechanical properties of carbon fibre/carbon nanotube-reinforced polymer are computed. Thereafter, the impact test is applied on the models. The finite element method is used to investigate the mechanical and impact properties of representative volume elements. The effects of waviness, volume percentage and aspect ratio of the carbon fibre and CNT on the mechanical properties of the multiscale composite are evaluated. It is shown that reinforcing the polyethene matrix by carbon fibres and CNTs significantly increases its impact resistance. Adding 3% and 5% volume percentages of CNT into 3%-carbon fibre/polyethene and 5%-carbon fibre/polyethene respectively, resulted in 26% and 47% improvement in the impact resistance of the composite.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3