Structural response of sandwich structures with CFRP face sheets under quasi-static indentation and high velocity impact: An experimental and numerical study

Author:

Dhanarasu Muniraj1ORCID,VM Sreehari1

Affiliation:

1. School of Mechanical Engineering, SASTRA Deemed to be University, Thanjavur, India

Abstract

Honeycomb sandwich structures (HSSs) with carbon fibre reinforced polymer (CFRP) composite face sheets are extensively used as light-weight structures in aerospace engineering due to their high strength-to-weight ratio and energy absorption properties. However, the composite face sheets are highly vulnerable to impact loads and cause damage to the structure based on the impact energy. This study investigates the structural response of HSS with CFRP face sheets under quasi-static indentation and a wide range of impact energy: low to high velocity impact. A finite-element model was developed and numerical simulations were carried out at various impact energies, thereby providing deeper insights into the impact dynamics and understanding various damage states such as dent, front face sheet perforation, core damage and rear face sheet penetration. The numerical simulation result was compared with the experimentally tested HSS using a single-stage gas gun under 53.6 J to validate the finite-element model in terms of deformation and damage status. A quasi-static indentation test was conducted and numerically predicted force data under impact test for the complete perforation case was compared to address the dependency of rate of loading. The carbon nanotube (CNT) with various weight percentages (wt%), such as 0.2, 0.4 and 0.6, was added to the matrix system through a vacuum assisted resin transfer technique and experiments were conducted at 79, 107 and 135 J. The impact resistance increases with CNT addition and hence no perforation was recorded for all the test cases of 0.6 wt% CNT addition. The influence of CNT addition on the damage area is more on the bottom face sheet and a 57% reduction in damage area was recorded for the case of 0.6 wt% CNT addition at 135 J impact energy when compared to the neat carbon/epoxy composite.

Funder

Science and Engineering Research Board, Department of Science & Technology, India

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3