Three-dimensional printed thermoplastic polyurethane on fabric as wearable smart sensors

Author:

Kumar Sanjeev1,Singh Rupinder2ORCID,Singh Amrinder Pal1,Wei Yang3

Affiliation:

1. Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University Chandigarh, Chandigarh, India

2. Department of Mechanical Engineering, National Institute of Technical Teachers Training and Research, Chandigarh, India

3. Department of Engineering, Nottingham Trent University, Nottingham, UK

Abstract

The microstrip patch antenna (MPA) with a thermoplastic substrate has been widely used in wearable sensors primarily due to its lightweight, flexibility, strength, and compactness. But up till now, little has been conveyed on the use of three-dimensional (3D) printed thermoplastic polyurethane (TPU) on cotton-lycra woven (CLW) fabric-based substrate as a wearable sensor. This study presents a novel and scalable approach for characterizing, simulating, and fabricating the substrate for wearable sensor applications. In this study 3D printing of TPU on CLW fabric (70% cotton (on the warp side)-30% lycra (on the weft side) using fused filament fabrication (FFF) process) has been reported with a tradeoff between flexibility and strength (of a substrate for wearable sensor applications). The rheological, mechanical, morphological, four-dimensional (4D), and resonance frequency (RF) characterization of the substrate has been established. As regards rheological properties, the melt flow index (MFI) of primary (1°) recycled TPU was observed as 29.758 g/(10min). Further, the optimized 3D printing settings of TPU were obtained based on the mechanical testing (minimum stiffness, maximum peak strength (PS), maximum Young's modulus (E), and maximum strain energy (SE)) which comes out to be 225°C nozzle temperature, 18 mm/s printing speed and 60% infill density with a stiffness of 3.311 N/mm and PS of 9.628 MPa. The mechanical properties of TPU printed on stretched and unstretched CLW fabric were tested for lower stiffness (more flexibility). To ascertain the mechanical properties, porosity analyses of samples printed on CLW fabric have been performed based on scanning electron microscopy (SEM). For dielectric properties, and RF characterization, the ring resonator (RR) test was performed based on a Vector network analyzer (VNA). Finally, 4D characterization of the substrate was performed by applying a load from 0 to 25 N, resulting in programable RF output (in the industry scientific and medicine (ISM) band).

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On 3D printing of thermoplastic polyurethane over woven fabric for wearable sensors;Advances in Materials and Processing Technologies;2023-10-14

2. On comparison of sensing capabilities of three-dimensional printed wearable sensors;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2023-09-06

3. 4D Printing in Biomedical Engineering: Advancements, Challenges, and Future Directions;Journal of Functional Biomaterials;2023-06-29

4. Preparation and electromagnetic performance of a light-weight, thin, and high-gain three-dimensional woven hollow structure microstrip antenna;Journal of Industrial Textiles;2023-01

5. One-way/two-way programming of fabric thermoplastic substrate for sensor applications;Reference Module in Materials Science and Materials Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3