Affiliation:
1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, PR China
Abstract
With the popularity of 5 G, there is an increasing request for a light, high-performance, and stable structure for wireless communication. To solve the problems of delamination cracking and its own heavy weight of the conventional microstrip antenna, this study used ultra-high molecular weight polyethylene (UHMWPE) filament tows and purple copper filament tows as raw materials to prepare 3D woven hollow structure microstrip antenna preforms on a common loom. Using the prepared preforms for reinforcement and resin as the matrix, the VARTM process was used to prepare a 3D woven hollow structure microstrip antenna with a height of 6.8 mm, a weight of 35 g, and a bulk density of 0.7 g/cm3. The combination of the electromagnetic performance test and HFSS software simulation shows that the antenna has excellent radiation performance with a gain of 7.5 dB and a measured VSWR of 1.25. The mechanical performance test results show that it can withstand a maximum compression load of 2982 N and a maximum bending load of 364 N with no obvious delamination at the fracture. It is light, thin, and load-bearing with excellent radiation performance. There will be great potential in the unmanned field and the space field in the future.
Funder
2022 Basic Scientific Research Project of Liaoning Provincial Department of Education
Science and Technology Innovation Foundation(Science and technology benefiting people project) of Dalian
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)