Architected functionally graded porous lattice structures for optimized elastic-plastic behavior

Author:

Mahbod Mahshid1,Asgari Masoud1ORCID,Mittelstedt Christian2

Affiliation:

1. Research Laboratory of Passive Safety Systems, Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Iran

2. Technische Universität Darmstadt, Fachbereich Maschinenbau, Fachgebiet Konstruktiver Leichtbau und Bauweisen (KLuB), Germany

Abstract

In this paper, the elastic–plastic mechanical properties of regular and functionally graded additively manufactured porous structures made by a double pyramid dodecahedron unit cell are investigated. The elastic moduli and also energy absorption are evaluated via finite element analysis. Experimental compression tests are performed which demonstrated the accuracy of numerical simulations. Next, single and multi-objective optimizations are performed in order to propose optimized structural designs. Surrogated models are developed for both elastic and plastic mechanical properties. The results show that elastic moduli and the plastic behavior of the lattice structures are considerably affected by the cell geometry and relative density of layers. Consequently, the optimization leads to a significantly better performance of both regular and functionally graded porous structures. The optimization of regular lattice structures leads to great improvement in both elastic and plastic properties. Specific energy absorption, maximum stress, and the elastic moduli in x- and y-directions are improved by 24%, 79%, 56%, and 9%, respectively, compared to the base model. In addition, in the functionally graded optimized models, specific energy absorption and normalized maximum stress are improved by 64% and 56%, respectively, in comparison with the base models.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3