Electron beam powder bed fusion of Ti-6Al-2Sn-4Zr-2Mo lattice structures: morphometrical and mechanical characterisations

Author:

Galati ManuelaORCID,Giordano Massimo,Saboori Abdollah,Defanti Silvio

Abstract

AbstractMetallic light and complex structures, such as lattice, made by Ti-6Al-2Sn-4Zr-2Mo (Ti6242) have potential applications in many different industries, especially in light and high-temperature-resistant aerospace and aeronautical components. An advantage of the electron beam powder bed fusion (PBF-EB) process over conventional and other additive manufacturing processes is the ability to fabricate lattice structures easily. However, the control of the effect of the manufacturing process for fabricating such small features is central to define the structure’s mechanical properties. This work investigates the effects of PBF-EB parameters on the geometrical quality of Ti6242 lattice structures. The selected cell consists of 12 rhombic areas connected by 24 struts joined in 12 vertices. The structures were produced in two cell sizes and two strut diameters under nine different process sets. X-ray computed tomography and scanning electron microscopy analyses were used to characterise the morphometrical parameters of each as-built cell and the interlayer integrity of the struts. Evolution under compressive loads was used to determine the mechanical properties of the lattice structures and the failure mechanism underlying the influence of process parameters on the mechanical properties. The as-built Ti6242 lattices were well-formed without voids and cracks. The outcomes revealed a significant effect of the considered lattice structure and process setup on the morphometric parameters. Even minor variations of the main processing parameters considerably impacted the mechanical properties of the structure.

Funder

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3