Synthesis of magnetorheological fluid and its application in a twin-tube valve mode automotive damper

Author:

Madhavrao Desai Rangaraj1,Acharya Subash1,Jamadar Mohibb-e-Hussain1,Kumar Hemantha1ORCID,Joladarashi Sharnappa1,Sekaran SC Raja2

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India

2. Rambal Ltd, Thirukazhukunram road, Thiruporur, Chennai, India

Abstract

The change in rheological properties of smart materials like magnetorheological fluid when brought under the influence of a magnetic field can be utilized to develop magnetorheological devices where the output has to be continuously and quickly varied using electronic control interface. In the present study, magnetorheological fluid is synthesized and used as a smart fluid in a twin-tube magnetorheological damper operating in valve mode. The behavior of the magnetorheological fluid is experimentally characterized in a rheometer and mathematically modeled using Herschel–Bulkley model. The parameters of the Herschel–Bulkley model are expressed as polynomial functions of strength of the magnetic field in order to find the shear stress developed by the magnetorheological fluid at any given strength of the magnetic field applied. The magnetorheological damper, which was designed for application in a passenger van, is tested in the damper testing machine. The performance of the damper at different damper velocities and current supplied is studied. The range of values for the parameters of the experimental testing are chosen to emulate the actual conditions of operation in its intended application. Nondimensional analysis is performed, which links magnetorheological fluid rheological properties and geometrical parameters of magnetorheological damper design with the force developed by the damper. Finite element method magnetics is used to find the strength of the magnetic field at the fluid flow gap. Analytical methods are used to calculate the damper force developed due to the field-dependent yield stress and compared with experimental force values. The resulting dynamic range of the magnetorheological damper is also assessed.

Funder

Ministry of Road Transport and Highways, Government of India

Ministry of Human Resource Development

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3