Use of aluminum foam core sandwich structures to improve the blast-mitigation performance of light tactical vehicle side-vent-channel solution

Author:

Grujicic M1,Yavari R1,Snipes JS1,Ramaswami S1

Affiliation:

1. Department of Mechanical Engineering, Clemson University, Clemson, SC, USA

Abstract

In our recent work, a side-vent-channel blast-mitigation concept/solution for light tactical vehicles was proposed. As a part of this solution, side-vent channels are attached to the V-shaped vehicle underbody, in order to promote venting of the soil ejecta and gaseous detonation products and, in turn, generate a downward thrust on the targeted light tactical vehicle. As a consequence, the blast loads resulting from a shallow-buried mine detonated underneath a light tactical vehicle are mitigated, improving the probability for vehicle survival. The concept was motivated by the principles of operation of the so-called “pulse detonation” rocket engines. To quantify the utility and blast-mitigation capacity of this concept, use was made of several computational and design optimization methods and tools in our prior work. It was found that the capacity of the proposed blast-mitigation solution is relatively small, but still noteworthy. The present work focuses on further improvements in the blast-mitigation capacity of the side-vent-channel solution. Specifically, the benefits offered by substitution of the all-steel side-vent channels with side-vent channels made of sandwich structures (consisting of steel face-sheets and aluminum foam core) for all-steel side-vent channels are explored. The results obtained clearly demonstrated that this substitution can improve the blast-mitigation efficiency of the side-vent-channel solution. In addition, through the use of a design optimization analysis, it was established that this improvement can be further increased through proper grading of the aluminum foam density profile through the sandwich structure core.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Blast Mitigation Performance Evaluation of Metallic Sandwich Panels with Honeycomb, Corrugated, Auxetic, and Foam Cores;International Journal of Structural Stability and Dynamics;2024-08-06

2. Dynamic Response Comparison of Sandwich Panels with Honeycomb and Foam Core Under Blast Loads;Industrial and Manufacturing Designs;2024-07-03

3. Dynamic response optimization of the multistage sandwich structures imperiled to explosive loading;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2024-03-08

4. Design and analysis of lightweight stiffened honeycomb metallic sandwich panels under high-intensity air blast;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2023-06-08

5. The Dynamic Response of AuxHex and Star-Reentrant Honeycomb Cored Sandwich Panels Subject to Blast Loading;Arabian Journal for Science and Engineering;2023-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3