Optimal design of an improved X¯ and R control chart for joint monitoring of process location and dispersion

Author:

Wan Qiang1ORCID,Zhu Mei1

Affiliation:

1. School of Business, Xinyang Normal University, Xinyang, China

Abstract

Enhancing the detection power of control charts for detecting small to moderate process changes is always the focus of attention in academia. To improve the detection ability of conventional [Formula: see text] and R control charts, an improved joint [Formula: see text] and R chart, which combines the ordinary [Formula: see text] and R charts with runs rules of the type ‘ r out of m’, is proposed to monitor the process location and dispersion simultaneously. A finite Markov chain imbedding approach is employed to develop the resulting control scheme. A comparative study is conducted to investigate the performance of the proposed chart in terms of the out-of-control average run length. The statistical performance of the suggested chart when the process parameters are estimated is also evaluated. The numerical results indicate that (1) the proposed chart improves the detection ability of traditional [Formula: see text] and R charts in detecting small to moderate process shifts; (2) the suggested scheme performs better than the EWMA and CUSUM schemes in detecting large process fluctuations. Furthermore, when specific values of r and m are selected, the statistical performance of the proposed chart for detecting small shifts is close to or even better than that of its competitors; (3) the run length performance of the proposed chart is greatly affected by parameter estimation, especially for small process shifts.

Funder

the Planning Project of Philosophy and Social Science in Henan Province

Nanhu Scholars Program for Young Scholars of XYNU

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Thorough Comparison of the Variable-Sample-Size Weighted-Loss CUSUM and ABS-SPRT Control Charts;2023 IEEE 13th Symposium on Computer Applications & Industrial Electronics (ISCAIE);2023-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3