A Type-2 Fuzzy u-Control Chart Considering Probability-Based Average Run Length

Author:

Mohd Razali Nur HidayahORCID,Abdullah LazimORCID,Ab Ghani Ahmad TermimiORCID,Afthanorhan AsyrafORCID,Zabihinpour Mojtaba

Abstract

Fuzzy sets are an emerging trend in shaping the development of control charts for statistical process control. The sets are germane to vague data that comes from incomplete or inaccurate measurements. Nevertheless, fuzzy sets are inadequate in some areas of industry since their membership functions are crisp numbers. The fuzzy sets are not fully able to compute higher levels of uncertainty, which might degrade the performance of the analysis. Therefore, type-2 fuzzy sets are proposed to be merged with control charts since these sets are hypothesized to be more capable of detecting a defect in process control. This paper aims to develop interval type-2 fuzzy u (IT2Fu) charts as a new approach to detecting defects. In addition, this paper presents a comparative analysis of performances between traditional u-control charts, type-1 fuzzy u-control charts, and type-2 fuzzy u-control charts. 23 samples of lubricant data with 48 subgroups were examined to identify the defects. The output showed that all of the control charts produced almost similar results except for data 14, which is “out of control” in IT2Fu-control charts but “in control” in traditional u-control charts and “rather in control” in type-1 fuzzy u-control charts. Furthermore, the performances of the charts were compared using a probability-based average run length (ARL), where probability type 1 error is computed. It was found that the ARL value of the IT2Fu-control chart showed the lowest value among the three types of charts. The analysis indicated that the IT2Fu-control chart outperformed the traditional u-control chart and the type-1 fuzzy u-control chart. The results obtained seem to support the idea that IT2Fu-control charts are more sensitive compared to type 1 fuzzy u-control charts and traditional u-control charts, so that IT2Fu-control charts are able to adequately support incomplete and vague data on process control.

Publisher

Universal Wiser Publisher Pte. Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3