Affiliation:
1. Air Force Engineering University, Xi’an, China
2. Department of Electronic Engineering, Tsinghua University, Beijing, China
Abstract
Small unmanned aerial vehicles are widely used in urban space because of its flexibility and maneuverability. However, there are full of dynamic obstacles and immobile obstacles which will affect safe flying in urban space. In this paper, a novel integrated path planning approach for unmanned aerial vehicles is presented, which is consisted of three steps. First, a time-environment dynamic map is constructed to represent obstacles by introducing time axis. Second, unmanned aerial vehicles’ flyable paths are explored based on breadth-first algorithm. Third, a path planning method using A* algorithm and local trace-back model is designed in order to discover sub-optimal feasible path rapidly in unmanned aerial vehicles’ field of view. Finally, the simulation results have illustrated that the proposed method can ensure unmanned aerial vehicles’ autonomous path planning safely and effectively in urban space crowded with obstacles.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,Control and Optimization,Instrumentation
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献