An improved memetic algorithm for distributed hybrid flow shop scheduling problem with operation inspection and reprocessing

Author:

Zheng Yu1,Peng Ningtao1,Qi Hao2ORCID,Gong Guiliang2,Huang Dan2,Zhu Kaikai2,Liu Jingsheng3,Liu Gonggang23

Affiliation:

1. College of Mechanical and Electrical Engineering, Central South University, Changsha, China

2. Department of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, China

3. Guangdong Hold Machinery Co., Ltd, Guangzhou, China

Abstract

The classical distributed hybrid flow shop scheduling problem (DHFSP) only considers static production settings while ignores operation inspection and reprocessing. However, in the actual production, the manufacturing environment is usually dynamic; and the operation inspection and reprocessing are very necessary to avoid unqualified jobs from being transported to other production units and to make reasonable arrangements for unqualified and unprocessed jobs. In this paper, we propose a DHFSP with operation inspection and reprocessing (DHFSPR) for the first time, in which the operation inspection and reprocessing as well as the processing time and energy consumption are considered simultaneously. An improved memetic algorithm (IMA) is then designed to solve the DHFSPR, where some effective crossover and mutation operators, a new dynamic rescheduling method (DRM) and local search operator (LSO) are integrated. A total 60 DHFSPR benchmark instances are constructed to verify the performance of our IMA. Extensive experiments carried out demonstrate that the DRM and LSO can effectively improve the performance of IMA, and the IMA has obvious superiority to solve the DHFSPR problem compared with other three well-known algorithms. Our proposed model and algorithm here will be beneficial for the production managers who work with distributed hybrid shop systems in scheduling their production activities by considering operation inspection and reprocessing.

Funder

the National Nature Science Foundation of China

the Nature Science Foundation of Hunan

the Hunan Provincial Department of Education Project

the Changsha Soft Science Research Program

the Hunan Provincial Innovation Foundation for Postgraduate

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3