Affiliation:
1. College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
Abstract
This study considers the visual stabilization problem of nonholonomic mobile robots and proposes a novel optimization stabilization method for visual servo control of nonholonomic mobile robots with monocular cameras fixed onboard. The main idea of the method is to utilize control Lyapunov functions of discrete-time nonlinear systems to design a family of explicit stabilization control laws of the visual servo error system. The parameters of the control laws can indirectly reflect the performance of the visual servo controllers. Then taking account of visibility constraints and actuator limitations, a set of optimal parameters of the control laws is calculated by offline solving a constrained finite horizon optimal control problem. Moreover, the stabilization results on the optimal visual servo controller are established based on the properties of control Lyapunov functions. Finally, some simulation experiments are used to illustrate and evaluate the performance of the visual servo control scheme proposed here.
Subject
Applied Mathematics,Control and Optimization,Instrumentation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献