N-version programming approach with implicit safety guarantee for complex dynamic system stabilization applications

Author:

Subasi Nadir1ORCID,Guner Ufuk2,Ustoglu Ilker3

Affiliation:

1. Department of Computer Programming, Kirklareli University, Kirklareli, Turkey

2. Department of Electrical and Electronics Engineering, Erzurum Technical University, Erzurum, Turkey

3. Department of Control and Automation Engineering, Istanbul Technical University, Istanbul, Turkey

Abstract

Safety-critical systems are widely used in many sectors to prevent fatal accidents and prevent loss of life, damage of property, or deterioration of the environment. Implementation of software safety standards as part of the development of safety-critical software is generally considered an essential element of any safety program. Therefore, it has become more critical to produce highly reliable software to meet the safety requirements established by functional safety standards, such as IEC 61508, ISO 26262, and EN 50128. IEC 61508 supports well-known safety mechanisms such as design diversity like N-version (multi-version) programming. N-version (multi-version) programming is a method where multiple functionally equivalent programs are independently developed from the same software specifications. N-version (multi-version) programming is particularly an effective approach to increase the quality of software in a safety-critical system. In this paper, one of the well-known and widely used algorithms in the field of N-version (multi-version) programming, the majority voting algorithm, has been modified with an online stability checker where the decisions of the voter are judged against the stability of the underlying system. The plant where all the theoretical results are implemented is a tilt-rotor system with the proposed N-version (multi-version) programming–based controller. The experimental results show that the modified majority voter-based N-version (multi-version) programming controller provides more reliable control of the plant.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reliability Perspective of Software Models: An Overview;Springer Series in Reliability Engineering;2024

2. Software Reliability Growth Model for N-Version Fault Tolerant Software with Common and Independent Faults;International Journal of Reliability, Quality and Safety Engineering;2023-10-06

3. Selection of the optimal set of versions of N-version software using the ant colony optimization;Journal of Physics: Conference Series;2021-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3