Software Reliability Growth Model for N-Version Fault Tolerant Software with Common and Independent Faults

Author:

Kumar Sudeep1ORCID,Aggarwal Anu G.2,Gupta Ritu3ORCID,Kapur P. K.4ORCID

Affiliation:

1. Department of Mathematics, AIAS, Amity University, Noida 201303, India

2. Department of Operational Research, University of Delhi, Delhi, India

3. T A Pai Management Institute, Manipal Academy of Higher Education, Manipal, India

4. Amity Center for Interdisciplinary Research, Amity University, Noida 201303, India

Abstract

Research and development teams have become increasingly focused on developing highly reliable software for safety-critical systems. It is a major challenge for real-time control systems to achieve high reliability software to meet safety standards. A reliability evaluation focuses primarily on analytical and modeling techniques for fault prediction. In safety-critical systems like nuclear plant controls, aircraft controls and railroad signalization systems, N-version programming (NVP) is an effective technique for raising software’s reliability, particularly in areas with high-risk ratios because small errors can result in hazardous incidents. It allows the software to be fault-tolerant, aiding it to produce accurate results even when the software has faults. We present an analytical method for assessing the reliability of N-version software systems. Analysis of the system’s reliability and other performance metrics is provided with closed-form expressions. As an additional extension, we conduct numerical analyses of two cases, the 2VP system and 3VP system, in which suitable parameters are used. We conduct numerical simulations using MATLAB to generate the analytical results and compare the analytical results by using numerical results and neuro-fuzzy results using fuzzy interference systems.

Funder

Human Resource Development Group

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3