The design of underwater tactile force sensor with differential pressure structure and backpropagation neural network calibration

Author:

Zhang Jianjun12ORCID,Han Pengyang1,Liu Qunpo12,Li Shasha1,Li Bin1

Affiliation:

1. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo, Henan, P.R. China

2. Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment, Jiaozuo, Henan, P.R. China

Abstract

The underwater tactile force measurement was prone to cross-sensitivity, causing the difficulty in distinguishing tactile force signal with the underwater complex environment of water pressure influence. For this problem, an underwater tactile force sensor whose sensing core was based on Microelectromechanical Systems (MEMS) was designed with differential pressure typed structure. The hollow hemispherical flexible contacts located at the upper and lower end, and the hollow cylindrical shell in the middle part composed the structure of the capsule-shaped sensor. The upper flexible contact could sense the compound signal composed of water pressure and tactile force, at the same time, the lower flexible contact could measure the water pressure information. The deformation signal of the upper and lower flexible contacts could be transformed to the force sensor core’s upper and lower surfaces with silicon oil filled in the inner hollow part of the sensor. The tactile force signal could be obtained with water pressure eliminated through vector superposition method under the influence of static pressure of water. The structure and manufacture technology were introduced, and the Backpropagation (BP) neural network data regression algorithm was designed for the cross sensitivity. The experiments are conducted to demonstrate the effectiveness of the differential pressure structure in eliminating the influence of water static pressure. The results indicated that the BP neural network data regression algorithm successfully produced real tactile force signals, which is highly beneficial for the intelligent operation of underwater dexterous hand. Additionally, the sensor has an accuracy of 5%.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3