Numerical investigation of the dynamic responses of steel-concrete girder bridges subjected to moving vehicular loads

Author:

Gao Qingfei1ORCID,Zhang Kun1,Wang Tong2,Peng Weikang3,Liu Chengqing4

Affiliation:

1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, China

2. School of Transportation, Inner Mongolia University, Hohhot, China

3. School of Architecture and Construction, Northeast Forestry University, Harbin, China

4. Heilongjiang Longjian Road & Bridge No. 5 Engineering Co. Ltd, Harbin, China

Abstract

The steel-concrete composite girder bridge is a new type of bridge. The steel girder and concrete slab are connected together by connectors and bear the common force so that the tensile performance of steel and the compressive performance of concrete can be fully utilized. The advantages are obvious. However, research on the dynamic analysis of steel-concrete composite beam bridges is still relatively rare, and the dynamic effects on these bridges from vehicles are becoming increasingly significant. In this paper, a more complex steel-concrete composite simply supported beam bridge model and the entire vehicle model are established, and five steel-concrete connection levels of the bridge model are considered. Using the finite element model, the effects of five factors, namely, bridge natural frequency, vehicle natural frequency, vehicle speed, vehicle lateral position and bridge deck roughness, on the dynamic load allowance ( DLA) of the composite girder bridge are studied. The influence of vehicle speed and bridge surface roughness on the DLA has a strong regularity. The change in the DLA of the lateral position of the vehicle is highly symmetrical, and the DLA value at the side beam is larger than that of the center beam. Changes in bridge vibration frequency and vehicle vibration frequency can bring about significant changes in the DLA, and the closer the two frequencies are, the more significant the DLA increases, and the more likely it is to produce resonance.

Funder

fundamental research funds for the central universities

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3