Numerical Investigation on the Dynamic Performance of Steel–Concrete Composite Continuous Rigid Bridges Subjected to Moving Vehicles

Author:

Guo Binqiang,Wang Renzhi,Lu Chen,Shi Weijian,Gao QingfeiORCID

Abstract

Assembly construction is the main feature of industrialized bridges, and π-shaped section steel–concrete composites that are continuously rigid have been widely used in engineering fields in recent years; however, their dynamic responses and corresponding impact coefficients in positive and negative moment regions need to be further studied. First, considering the interface slip model, we established a finite element model for the π-shaped continuous region section of the steel–concrete composite on the Sutai Expressway Tongfu No. 3 viaduct. Second, the bridge deck unevenness parameters were generated by preparing a MATLAB program with random calculations and were added to the bridge deck as the excitation load along with the vehicle load. Such parameters are defined on the basis of considering the vertical degrees of freedom of the four wheels and of one vehicle rigid body. Finally, we analyzed the displacement or stress impact coefficients as the dynamic response index of the bridge by adjusting the vehicle travel speeds, vehicle weights, interface slip stiffness values, and deck unevenness values. The results show that the change in vehicle travel speed and the change in vehicle load weight have some influence on the change in the dynamic effect of the combined beam, but this change is not significant. Moreover, the unevenness and interface slip strength changes have a large effect on the dynamic effect of the combination beam, which can significantly change the impact coefficient of the combination beam bridge. The worse the unevenness of the bridge deck is, the lower the grade of interface slip for the steel–concrete composite bridges and the higher the impact coefficient. We calculated the recommended impact coefficient values of the steel–concrete composite bridge based on the specifications for various countries, and they range from 1.16 to 1.4; such values are similar to the finite element calculation results.

Funder

Key Research & Development Program of Shandong Province of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3