A novel multi-stream method for violent interaction detection using deep learning

Author:

Li Hongchang1ORCID,Wang Jing1,Han Jianjun1,Zhang Jinmin1,Yang Yushan1,Zhao Yue1

Affiliation:

1. Xi’an Special Equipment Inspection Institute, Xi’an, China

Abstract

Violent interaction detection is a hot topic in computer vision. However, the recent research works on violent interaction detection mainly focus on the traditional hand-craft features, and does not make full use of the research results of deep learning in computer vision. In this paper, we propose a new robust violent interaction detection framework based on multi-stream deep learning in surveillance scene. The proposed approach enhances the recognition performance of violent action in video by fusing three different streams: attention-based spatial RGB stream, temporal stream, and local spatial stream. The attention-based spatial RGB stream learns the spatial attention regions of persons that have high probability to be action region through soft-attention mechanism. The temporal stream employs optical flow as input to extract temporal features. The local spatial stream learns spatial local features using block images as input. Experimental results demonstrate the effectiveness and reliability of the proposed method on three violent interactive datasets: hockey fights, movies, violent interaction. We also verify the proposed method on our own elevator surveillance video dataset and the performance of the proposed method is satisfied.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3