A clustering-aided multi-agent deep reinforcement learning for multi-objective parallel batch processing machines scheduling in semiconductor manufacturing

Author:

Zhang Peng1ORCID,Jin Mengyu1,Wang Ming2,Zhang Jie1,He Junjie1,Zheng Peng3

Affiliation:

1. Shanghai Engineering Research Center of industrial Big Data and Intelligent System, Institute of Artificial Intelligence, Donghua University, Shanghai, China

2. College of Mechanical Engineering, Donghua University, Shanghai, China

3. College of Log istics Engineering, Shanghai Maritime University, Shanghai, China

Abstract

Batch processing machines are often the bottleneck in semiconductor manufacturing and their scheduling plays a key role in production management. Pioneer researches on multi-objective batch machines scheduling mainly focus on evolutionary algorithms, failing to meet the online scheduling demand. To deal with the challenges confronted by incompatible job families, dynamic job arrivals, capacitated machines and multiple objectives, we propose a clustering-aided multi-agent deep reinforcement learning approach (CA-MADRL) for the scheduling problem. Specifically, to achieve diverse nondominated solutions, an offline multi-objective scheduling algorithm named Multi-Subpopulation fast elitist Non-Dominated Sorting Genetic Algorithm (MS-NSGA-II) is firstly developed to obtain the Pareto Fronts, and a clustering algorithm based on cosine distance is employed to analyze the distribution of Pareto frontier solution, which would be used to guide reward functions design in multi-agent deep reinforcement learning. To realize multi-objective optimization, several reinforcement learning base models are trained for different optimization directions, each of which composed of batch forming agent and batch scheduling agent. To alleviate time complexity of model training, a parameter sharing strategy is introduced between different reinforcement learning base model. By validating the proposed approach with 16 instances designed based on actual production data from a semiconductor manufacturing company, it has been demonstrated that the approach not only meets the high-frequency scheduling requirements of manufacturing systems for parallel batch processing machines but also effectively reduces the total job tardiness and machine energy consumption.

Funder

National Natural Science Foundation of China

The Open Project of Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry

Shanghai “Science and Technology Innovation Action Plan” Soft Science Research Project

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3