Task failure prediction for wafer-handling robotic arms by using various machine learning algorithms

Author:

Huang Ping Wun1,Chung Kuan-Jung1ORCID

Affiliation:

1. Department of Mechatronics Engineering, National Changhua University of Education, Changhua

Abstract

Industries are increasingly adopting automatic and intelligent manufacturing in production lines, such as those of semiconductor wafers, optoelectronic devices, and light-emitting diodes. For example, automatic robot arms have been used for pick-and-place workpiece applications. However, repairing automatic robot arms is time-consuming and increases the downtime of equipment and the cycle time of manufacturing. In this study, various machine learning (ML) models, such as the general linear model (GLM), random forest, extreme gradient boosting, gradient boosting machine, and stacked ensemble, were used to predict the maximum Cartesian positioning shift (i.e. the maximum eccentric distance) in the next handling time period (e.g. 1 min). A charge-coupled-device-based fault diagnostic system was developed to measure the critical positions of the robotic arm when transferring wafers. A novel data augmentation method was used to determine the correlation parameters in the dataset for the ML models. The prediction error for each algorithm was determined using the root mean square error (RMSE). The results revealed that the GLM exhibited the lowest prediction errors. The RMSEs of the GLM were 0.024, 0.032, and 0.046 mm for 3421 pickups, the last 1000 pickups, and 100 pickups, respectively, for the prediction target. Thus, the GLM is a promising model for predicting the task failure of wafer-handling robotic arms.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Recurrence Plots and VGG Deep Learning Model to the Study of Condition Monitoring of Robotic Grinding;International Journal of Precision Engineering and Manufacturing;2023-08-29

2. Precise 6DOF Localization of Robot End Effectors Using 3D Vision and Registration without Referencing Targets;Vision Sensors - Recent Advances;2023-03-29

3. Intelligent Machine-Failure Prediction System (IMPS);2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM);2023-02-22

4. A Morphing Point-to-Point Displacement Control Based on Long Short-Term Memory for a Coplanar XXY Stage;Sensors;2023-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3