Condensation risk assessment on box windows: the effect of the window–wall interface

Author:

Maref W1,Van Den Bossche N2,Armstrong M1,Lacasse M A1,Elmahdy H1,Glazer R1

Affiliation:

1. National Research Council, Institute for Research in Construction, Ottawa, ON, Canada

2. Department of Architecture and Urban Planning, Ghent University, Ghent, Belgium

Abstract

Windows generally have the lowest temperature index in current building types, and will consequently be the primary location for interior surface condensation. Surface temperatures can easily be calculated using thermal finite-element models, but these generally omit the effect of convection in the windows and the window–wall interface. Hence, there is a need to determine if specific interface details provide potential for condensation on the window components in which air leakage paths may be prominent. The article reports on a laboratory evaluation of condensation risk assessment in a hotbox with varying pressure differences and the introduction of deficiencies. It was concluded that the effect of the type of insulation in the window–wall interface was very low for isobaric boundary conditions, whereas it has a significant effect when pressure differences are applied.

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3