Thermal and Energy-Efficiency Assessment of Hybrid CLT–glass Façade Elements

Author:

Rajčić Vlatka,Perković Nikola,Bedon ChiaraORCID,Barbalić Jure,Žarnić Roko

Abstract

Façade elements are a building component that satisfies multiple performance parameters. Among other things, “advanced façades” take advantage of hybrid solutions, such as assembling laminated materials. In addition to the enhanced mechanical properties that are typical of optimally composed hybrid structural components, these systems are energy-efficient, durable, and offer lighting comfort and optimal thermal performance, an example of which is the structural solution developed in collaboration with the University of Zagreb and the University of Ljubljana within the Croatian Science Foundation VETROLIGNUM project. The design concept involves the mechanical interaction of timber and glass load-bearing members without sealing or bonding the glass-to-timber surfaces. Following earlier research efforts devoted to the structural analysis and optimization of thus-assembled hybrid Cross-Laminated Timber (CLT)-glass façade elements, in this paper, special focus is given to a thermal and energy performance investigation under ordinary operational conditions. A simplified numerical model representative of a full-size building is first presented by taking advantage of continuous ambient records from a Live-Lab mock-up facility in Zagreb. Afterwards, a more detailed Finite Element (FE) numerical analysis is carried out at the component level to further explore the potential of CLT–glass façade elements. The collected numerical results show that CLT–glass composite panels can offer stable and promising thermal performance for façades similar to national and European standard requirements.

Funder

Hrvatska Zaklada za Znanost

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference56 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3