Temperature dependency of the long-term thermal conductivity of spray polyurethane foam

Author:

Holcroft Neal1ORCID

Affiliation:

1. National Research Council, Ottawa, ON, Canada

Abstract

The thermal properties of closed-cell foam insulation display a more complex behaviour than other construction materials due to the properties of the blowing agent captured in their cellular structure. Over time, blowing agent diffuses out from and air into the cellular structure resulting in an increase in thermal conductivity, a process that is temperature dependent. Some blowing agents also condense at temperatures within the in-service range of the insulation, resulting in non-linear temperature dependent relationships. Moreover, diffusion of moisture into the cellular structure increases thermal conductivity. Standards exist to quantify the effect of gas diffusion on thermal conductivity, however only at standard laboratory conditions. In this paper a new test procedure is described that includes calculation methods to determine Temperature Dependent Long-Term Thermal Conductivity (LTTC(T)) functions for closed-cell foam insulation using as a test material, a Medium-Density Spray Polyurethane Foam (MDSPF). Tests results are provided to show the validity of the method and to investigate the effects of both conditioning and mean test temperature on change in thermal conductivity. In addition, testing was conducted to produce a moisture dependent thermal conductivity function. The resulting functions were used in hygrothermal simulations to assess the effect of foam aging, in-service temperature and moisture content on the performance of a typical wall assembly incorporating MDSPF located in four Canadian climate zones. Results show that after 1 year, mean thermal conductivity increased 15%–16% and after 5 years 23%–24%, depending on climate zone. Furthermore, the use of the LTTC(T) function to calculate the wall assembly U-value improved accuracy between 3% and 5%.

Funder

Infrastructure Canada

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3