Comparison of Thermal Conductivity Measurements of Building Insulation Materials under Various Operating Temperatures

Author:

Abdou Adel A.1,Budaiwi Ismail M.2

Affiliation:

1. Department of Architectural Engineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia,

2. Department of Architectural Engineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia

Abstract

In harsh climates, utilizing thermal insulation in the building envelope can substantially reduce the building thermal load and consequently its energy consumption. The performance of the thermal insulation material is mainly determined by its thermal conductivity (k), which is dependent on the material’s density, porosity, moisture content, and mean temperature difference. In practice, the k-value is normally evaluated at 24 C (i.e., k24) according to relevant ASTM standards. However, when placed in the building envelope, thermal insulation materials can be exposed to significant ambient temperature and humidity variations depending on the prevailing climatic conditions. The objective of this study is to assess and compare the effect of operating temperatures on the k-value of various insulation materials commonly used in the building envelope. The k-values for seven categories of insulation materials (i.e., fiberglass, wood wool, mineral wool, rock wool, polyethylene, polyurethane, and polystyrene) are measured at different mean temperatures using an automated heat flow meter. Some preliminary measurements are reported for the purpose of assessing the impact of k-value variation on envelope-induced cooling loads (Budaiwi et al. 2002). In this study, comprehensive measurements, comparison, and analyses of results are presented and discussed. These underline the k-value degree of sensitivity ((Δk/ΔC)/k24) of various insulation materials with rising operating temperature. This would allow designers to better evaluate the thermal performance of building envelopes leading to a more realistic thermal assessment and energy requirements of buildings.

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3