Moisture Buffering and its Consequence in Whole Building Hygrothermal Modeling

Author:

Rode Carsten1,Grau Karl2

Affiliation:

1. Dept. of Civil Engineering, Technical University of Denmark Building 118, DTU, DK-2800 Kgs. Lyngby, Denmark,

2. Danish Building Research Institute, Aalborg University Dr. Neergards Vej 15, DK-2970 Hørsholm, Denmark

Abstract

Moisture absorption and desorption of materials in contact with indoor air of buildings can be used as a passive, i.e., nonmechanical, way to moderate the variation of indoor humidity. This phenomenon, which is recognized as `moisture buffering', could potentially be used as an attractive feature of building products to improve indoor air quality and to save energy. Of interest therefore is to establish a unit to appraise this quality of building products and to investigate the importance of moisture buffering when it is considered in whole building hygrothermal simulation. This paper will illustrate both. A new test method specifies a protocol for determination of what has recently been termed the Moisture Buffer Value (MBV) of building products. The paper presents the definition of MBV and introduces a test protocol which has been proposed for its experimental determination. The MBV is primarily meant as a value to characterize the ability of building products to moderate the variations of humidity in air which is in contact with the products, since it indicates the rate of flow of moisture over the product's surface when exposed to a certain humidity excitation. Hygroscopic interaction between air of the indoor climate and materials in the building envelope is taken into account in a model for whole building heat and moisture simulation. By means of an example, it will be investigated if: 1. it is possible to use the benefits of moisture buffering to save energy by reducing the requirement for ventilation if indoor humidity is a parameter for controlling ventilation rate, 2. it is possible to improve the perceived acceptability of indoor air, as judged by the temperature and humidity of the air, by using moisture buffering to control the indoor humidity. The results of the whole building hygrothermal simulations show that it is possible to rather significantly reduce the amplitudes of indoor relative variation when the moisture buffering effect of building materials is taken into account, compared to a situation with moisture tight interior building surfaces. The modeling also shows some possible benefits on energy consumption if humidity-controlled ventilation is employed, as well some benefit on the indoor acceptability with the hygrothermal quality of indoor air. However, both benefits seem to be somewhat limited in the model room used for analysis.

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3