Manufacturing processes for fabrication of flip-chip micro-bumps used in microelectronic packaging: An overview

Author:

Datta Madhav1ORCID

Affiliation:

1. Department of Chemical Engineering and Materials Science, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, India

Abstract

Electronic packaging is the methodology for connecting and interfacing the chip technology with a system and the physical world. The objective of packaging is to ensure that the devices and interconnections are packaged efficiently and reliably. Chip–package interconnection technologies currently used in the semiconductor industry include wire bonding, tape automated bonding and flip-chip solder bump connection. Among these interconnection techniques, the flip-chip bumping technology is commonly used in advanced electronic packages since this interconnection is an area array configuration so that the entire surface of the chip can be covered with bumps for the highest possible input/output (I/O) counts. The present article reviews the manufacturing processes for the fabrication of flip-chip bumps for chip–package interconnection. Various solder bumping technologies used in high-volume production include evaporation, solder paste screening and electroplating. Evaporation process produces highly reliable bumps, but it is extremely expensive and is limited to lead or lead-rich solders. Solder paste screening is cost-effective, but issues related to excessive void formation limits the process to low-end products. On the other hand, electrochemical fabrication of flip-chip bumps is an extremely selective and efficient process, which is extendible to finer pitch, larger wafers and a variety of solder compositions, including lead-free alloys. Electrochemically fabricated copper pillar bumps offer fine pitch capabilities with excellent electromigration performance. Due to these virtues, the copper pillar bumping technology is emerging as a lead-free bumping technology option for high-performance electronic packaging.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3