Workshop Facility Layout Optimization Based on Deep Reinforcement Learning

Author:

Zhao Yanlin1,Duan Danlu1

Affiliation:

1. Intelligent Manufacturing College, Panzhihua University, Panzhihua 617000, China

Abstract

With the rapid development of intelligent manufacturing, the application of virtual reality technology to the optimization of workshop facility layout has become one of the development trends in the manufacturing industry. Virtual reality technology has put forward engineering requirements for real-time solutions to the Workshop Facility Layout Optimization Problem (WFLOP). However, few scholars have researched such solutions. Deep reinforcement learning (DRL) is effective in solving combinatorial optimization problems in real time. The WFLOP is also a combinatorial optimization problem, making it possible for DRL to solve the WFLOP in real time. Therefore, this paper proposes the application of DRL to solve the dual-objective WFLOP. First, this paper constructs a dual-objective WFLOP mathematical model and proposes a novel dual-objective DRL framework. Then, the DRL framework decomposes the WFLOP dual-objective problem into multiple sub-problems and then models each sub-problem. In order to reduce computational workload, a neighborhood parameter transfer strategy is adopted. A chain rule is constructed for the appealed sub-problem, and an improved pointer network is used to solve the bi-objective WFLOP of the sub-problem. Finally, the effectiveness of this method is verified by using the facility layout of a chip production workshop as a case study.

Funder

Natural Science Foundation of Sichuan Province

Sichuan Technology & Engineering Research Center for Vanadium Titanium Materials

Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3