Simultaneous improvement of microgeometry and surface quality of spur and straight bevel gears by abrasive flow finishing process

Author:

Petare Anand1,Jain Neelesh Kumar1ORCID,Palani I. A.1

Affiliation:

1. Discipline of Mechanical Engineering, Indian Institute of Technology Indore, Simrol, India

Abstract

This article reports on influence of extrusion pressure, abrasive particle size and volumetric concentration on simultaneous reduction of surface roughness and microgeometry errors of spur and straight bevel gear by abrasive flow finishing (AFF) process. A vertical configured experimental apparatus was developed for two-way AFF and developed fixtures for finishing gears. Experimental investigations were conducted to identify optimum parametric combination, using response surface methodology, based on Box–Behnken design approach. Results revealed that higher values of abrasive particle size and volumetric concentration yield more percentage decrease in surface roughness and microgeometry error. Roughness profile, bearing area curve, microhardness, surface morphology, and wear resistance of the gear having best quality finishing were studied. Surface morphology analysis of the flank regions of the best finished spur and straight bevel gears found them to be smooth and free from cracks and burrs. Reciprocating wear test results revealed higher wear resistance of the AFF finished gears as compared to the unfinished gears. AFF also enhanced microhardness of the finished gears, which would enhance their operating performance and service life. This study shows that AFF is a flexible, economical, productive, easy to operate, and sustainable nontraditional process for precision finishing of gear that can simultaneously improve microgeometry, surface finish, microhardness, surface morphology, wear resistance, and residual stresses of the finished gears. Gear manufacturers and users will be benefited by the outcome of this study. JEL codes: C00, C20

Publisher

SAGE Publications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3