Pyrolysis model for a carbon fiber/epoxy structural aerospace composite

Author:

McKinnon Mark B12,Ding Yan2,Stoliarov Stanislav I2,Crowley Sean3,Lyon Richard E3

Affiliation:

1. Jensen Hughes, Baltimore, MD, USA

2. Department of Fire Protection Engineering, University of Maryland, College Park, MD, USA

3. Federal Aviation Administration, William J. Hughes Technical Center, Atlantic City International Airport, Atlantic City, NJ, USA

Abstract

Carbon fiber laminate composites have been utilized in the aerospace industry by replacing lightweight aluminum alloy components in the design of aircraft. By replacing low flammability aluminum components by carbon fiber laminates, the potential fuel load for aircraft fires may be increased significantly. A pyrolysis model has been developed for a Toray Co. carbon fiber laminate composite. Development of this model is intended to improve the understanding of the fire response and flammability characteristics of the composite, which complies with Boeing Material Specification 8–276. The work presented here details a methodology used to characterize the composite. The mean error between the predicted curves and the mean experimental mass loss rate curves collected in bench-scale gasification tests was calculated as approximately 17% on average for heat fluxes ranging from 40 to 80 kW m−2. During construction of the model, additional complicating phenomena were investigated. It was shown that the thermal conductivity in the plane of the composite was approximately 15 times larger than the in-depth thermal conductivity, the mass transport was inhibited due to the high density of the laminae in the composite, and oxidation did not appear to significantly affect pyrolysis at heat fluxes up to 60 kW m−2.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3