Modeling of Toxicological Effects of Fire Gases: VII. Studies on Evaluation of Animal Models in Combustion Toxicology

Author:

Hartzell Gordon E.1,Grand Arthur F.1,Switzer Walter G.1

Affiliation:

1. Southwest Research Institute Department of Fire Technology Post Office Drawer 28510 San Antonio, Texas 78284

Abstract

This study evaluated the potential use of the guinea pig as an animal model in conducting combustion toxicology experiments in which lethality is the end point. The guinea pig was found to be approximately three times as sensitive as the rat upon exposure to hydrogen chloride, presumably due to its tendency for bronchoconstriction. Compared to the rat, the guinea pig was relatively in sensitive to carbon monoxide. Lethal effects of mixtures of carbon monoxide and hydrogen chloride showed additivity only at relatively high concentrations of carbon monoxide. The lethal toxic potency of hydrogen cyanide was about the same for both the rat and the guinea pig. Based on comparisons of available toxicity data for humans and nonhuman primates, it was concluded that the rat is the better model when lethality studies are used. However, it is uncertain which animal model would be better when sublethal exposures, particularly to irritants, are considered.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3