Physical experiments and Fire Dynamics Simulator simulations on gasoline pool fires

Author:

Sudheer S.1,Saumil D.1,Prabhu S.V.1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology, Mumbai, India

Abstract

Radiative properties such as temperature and emissive power distributions are very essential for fire safety measurements. The objective of this study is to characterize these distributions for a gasoline pool fire both experimentally and numerically. Infrared thermal camera is employed for the measurement of temperature distributions of gasoline open pool fires for pool diameters of 0.3, 0.5, 0.7 and 1.0 m. Incident heat flux upon a target is computed using the measured apparent temperature distribution and is validated with Schmidt–Boelter heat flux gauge measurements. Numerical studies are conducted using Fire Dynamics Simulator 5.5.3 version. Heat flux measured of target area is used to validate the numerical simulations with the experimental results. Centerline temperature distribution of numerical simulation and the temperature distribution from the experimental results are compared. It is observed that Fire Dynamics Simulator is capable of simulating the open pool fires even for complex fuels such as gasoline.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3