Experimental investigation of impact of fire size on heat transfer and flame behavior of initial stage unsteady pool fires inside a cubical enclosure

Author:

MATHUR1, Akanksha1ORCID,RAY Anjan2ORCID,KALE S R2ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi,11016, India; Department of Mechanical Engineering, The Northcap University, Sector 23A, Gurugram, 122107, India

2. Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi,11016, India

Abstract

The ventilation equipment for enclosed spaces or office rooms is specified according National Building Code of India published by the Bureau of Indian Standards. Natural ventilation peri-odically together with mechanical ventilation is recommended to remove pollutants. The need to study fire and smoke behavior inside a completely closed room with air intake and exhaust vents becomes important in case of low or no mechanical ventilation service. An experimental study on unsteady heptane pool fires of different sizes in their initial stages was conducted in a cubical fire test chamber of 27 m3 inside dimensions. The compartment was naturally ventilated with a typical configuration of a vertical intake on a side wall and an exhaust vent at the ceiling leading into a duct. Three circular pans of diameters 0.34, 0.47 and 0.61 m were employed to generate the fire with n-heptane as fuel on a bed of water. Temperatures, wall heat fluxes and mass loss rate were measured. The flame was visualized using a video camera through a tempered view glass. The total heat transfer to the ceiling and wall increased with the increase in fire size as the flames became taller in the initial stages (3-4 minutes) with sig-nificant increase in case of 500 kW fire. The smoke layer was observed at about mid height (1.5 m) above floor. The leaning behavior of flames was seen due to naturally induced air inflow. The wall heat flux of about 50 kW/m2 obtained indicate hazardous environment for further flame spread. A fourfold increase in mass loss rate was observed with just 2.5 times increase in fire size inside the ceiling vented compartment.

Publisher

Journal of Thermal Engineering

Subject

Fluid Flow and Transfer Processes,Energy Engineering and Power Technology,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3