Analysis of Load Transfer Behaviour and Determination of Interfacial Shear Strength in Single-Fibre-Reinforced Titanium Alloys

Author:

Matikas Theodore E.1

Affiliation:

1. Department of Materials Science and Engineering, University of Ioannina, University Campus, 45110 Ioannina, Greece

Abstract

The effect of interfaces on load sharing behaviour has been evaluated by performing single-fibre fragmentation (SFF) experiments and analysis of titanium matrix composites at ambient and elevated temperatures. Fibre breaks were monitored by acoustic emission sensors, and the break locations were determined in-situ by an innovative ultrasonic non-destructive evaluation technique. Data analysis of SFF testing was performed using the Kelly-Tyson model. The length of fibre fragments and distribution were determined using innovative nondestructive technique. This study demonstrates that composite processing conditions can significantly affect the nature of the fibre/matrix interface and the resulting fragmentation behaviour of the fibre. Further, thermal micro-residual stresses, generated during the fabrication process and in-service due to the difference in thermomechanical characteristics of the model composite's constituents, play a major role influencing the interfacial shear stress transfer behaviour in single-fibre titanium matrix composites.

Publisher

SAGE Publications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Engineering Materials at the Atomic Scale for Energy, Environment and Health-Care Applications;Transactions of the Indian National Academy of Engineering;2023-07-08

2. Calendering of metal/polymer composites: An analytical formulation;Mechanics of Materials;2016-02

3. Evolution of crack-bridging and crack-tip driving force during the growth of a fatigue crack in a Ti/SiC composite;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2012-04-25

4. Adhesion Strength in Metal/Polymer Composites;Experimental and Applied Mechanics, Volume 6;2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3