Affiliation:
1. Department of Materials Science and Engineering, University of Ioannina, University Campus, 45110 Ioannina, Greece
Abstract
The effect of interfaces on load sharing behaviour has been evaluated by performing single-fibre fragmentation (SFF) experiments and analysis of titanium matrix composites at ambient and elevated temperatures. Fibre breaks were monitored by acoustic emission sensors, and the break locations were determined in-situ by an innovative ultrasonic non-destructive evaluation technique. Data analysis of SFF testing was performed using the Kelly-Tyson model. The length of fibre fragments and distribution were determined using innovative nondestructive technique. This study demonstrates that composite processing conditions can significantly affect the nature of the fibre/matrix interface and the resulting fragmentation behaviour of the fibre. Further, thermal micro-residual stresses, generated during the fabrication process and in-service due to the difference in thermomechanical characteristics of the model composite's constituents, play a major role influencing the interfacial shear stress transfer behaviour in single-fibre titanium matrix composites.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献