Evolution of crack-bridging and crack-tip driving force during the growth of a fatigue crack in a Ti/SiC composite

Author:

Withers Philip J.1,Lopez-Crespo Pablo2,Kyrieleis Albrecht1,Hung Yu-Chen1

Affiliation:

1. School of Materials, University of Manchester, Manchester M1 7HS, UK

2. Department of Civil and Materials Engineering, University of Malaga, C/Dr Ortiz Ramos s/n, 29071 Malaga, Spain

Abstract

High spatial resolution diffraction and imaging using synchrotron X-rays are combined to monitor the incremental growth of a fatigue crack through the matrix of a Ti-6Al-4V/SCS-6 SiC monofilament metal matrix composite. X-ray tomography is used to quantify the crack opening displacement (COD) and diffraction to measure the crack-tip stress field in each phase, the wear degraded interfacial strengths, as well as the crack face tractions applied by the bridging fibres, at maximum () and minimum () loading as a function of crack length. In this way, it has been possible to quantify the crack-tip driving force (the stress intensity range effective at the crack-tip) in three ways: from the COD, the bridging stresses and the crack-tip stress field. The fibre stresses act to prop open the crack atand shield the crack atsuch that the change in COD is small over the fatigue cycle. Consequently, the effective stress intensity range at the crack tip remains around 10 MPa√m as the crack lengthens, as more and more fibres bridge the crack despite the normally applied stress intensity rising to 60 MPa√m. The implications of the derived fracture mechanics parameters are assessed and the wider potential of X-ray diffraction and imaging for crack-tip microscopy is discussed.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3