Distributed Manipulation Using Discrete Actuator Arrays

Author:

Luntz Jonathan E.1,Messner William,Choset Howie2

Affiliation:

1. Department of Engineering, University of Michigan, Ann Arbor, MI 48109, USA

2. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

Distributed manipulation systems induce motions on objects through the application of many external forces. An actuator array performs distributed manipulation using a planar array of many small stationary elements (which are called cells) that cooperate to manipulate larger objects. Typically, highly dense actuator arrays are modeled as spatially continuous, programmable forcefields, althoughinmany implementations a relatively small number of actuators supports an object and continuous assumptions break down. This paper serves two purposes: to present a methodology for modeling and analyzing the dynamics of manipulation on a highly discrete actuator array and to present a methodology for designing manipulation strategies on discrete actuator arrays. This is done in the context of a particular macro-scale actuator array comprising a fixed planar array of motorized wheels. Modeling of the dynamics takes into account several models of the interaction between the actuators and the object, the distribution of the weight of the object among the supports, and the discrete nature of the system. Under certain modeling assumptions, the manipulation dynamics of an object are extremely simple for a given set of supporting cells. An inversion of these piecewise-continuous dynamics generates a fully continuous open-loop manipulation strategy, effectively smoothing out the discontinuities. The authors show that although the resulting manipulation field may stably position and orient any object in the continuous field case, discreteness causes many objects to experience unstable rotational equilibria. Thus, poor orientation precision is a limitation of open-loop manipulation using discrete actuator arrays and motivates the use of feedback. The authors also derive closed-loop manipulation strategies through an inversion of the discrete dynamics that reduce the many-input, three-output distributed control problem to a standard three-input, three-output control problem that operates under distributed control. In effect, the array of actuators is reduced to a single virtual actuator capable of applying a desired net force and moment on an object. It is proven that even in the presence of dynamic coupling and nonlinearities introduced due to discreteness, these closed-loop strategies are asymptotically stable. Multimedia extensions include a complete simulator and videos of the experimental prototype.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ArrayBot: Reinforcement Learning for Generalizable Distributed Manipulation through Touch;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Trajectory Planning and Tracking of Multiple Objects on a Soft Robotic Table Using a Hierarchical Search on Time-Varying Potential Fields;IEEE Transactions on Robotics;2024

3. Swarm-Inspired Controller: An Inference-Free Approach to Distributed Manipulation;Lecture Notes in Computer Science;2024

4. End-to-End Planner for Self-Reconfigurable Modular Robots Collaborative Objects Manipulation, Transport and Handover to Human Application;2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN);2023-08-28

5. Trajectory Optimization for Distributed Manipulation by Shaping a Physical Field;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3