Anionic Contrast–Enhanced MicroCT Imaging Correlates with Biochemical and Histological Evaluations of Osteoarthritic Articular Cartilage

Author:

Flynn Candace1ORCID,Hurtig Mark1ORCID,Linden Alex zur1

Affiliation:

1. Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada

Abstract

This study addressed difficulties in evaluating osteoarthritis (OA) progression in species with thin cartilage. Feasibility of using short, nonequilibrium contrast-enhanced micro–computed tomography (CE-μCT) to evaluate the physical and biochemical properties of cartilage was investigated. A preliminary in vitro study using CE-μCT study was performed using bovine osteochondral blocks with intact, mildly damaged (fibrillated), or severely damaged (delaminated) cartilage. Delamination of the superficial zone resulted in elevated apparent density compared with intact cartilage after 10 minutes of anionic contrast exposure ( P < 0.01). OA was induced by unilateral meniscal destabilization in n = 20 sheep divided into: early phase OA ( n = 9) and late phase OA ( n = 11), while n = 4 remained as naive controls. In vivo anionic nonequilibrium contrast CT of the operated stifle was conducted in the early phase sheep 13 weeks postoperatively using clinical resolution CT. Cartilage visibility in the contrasted leg was significantly improved compared with the noncontrasted contralateral stifle ( P < 0.05). Animals were sacrificed at 3 months (early phase) or 12 months (late phase) for additional ex vivo CE-μCT, and correlative tests with biochemical and histological measures. Concentration of sulfated glycosaminoglycan (sGAG) significantly varied between control, early, and late phase OA ( P < 0.005) and showed a negative ( r = −0.56) relationship with apparent density in the medial tibial plateau ( R2 = 0.28, P < 0.001). Histologically, parameters in proteoglycan and cartilage surface structure correlated with increasing attenuation. While previous studies have shown that CE-CT increases the apparent density of proteoglycan-depleted cartilage, we concluded that superficial zone disruption also contributes to this phenomenon.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Biomedical Engineering,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3