Contrast agent-enhanced computed tomography of articular cartilage: Association with tissue composition and properties

Author:

Silvast T. S.12,Jurvelin J. S.3,Aula A. S.3,Lammi M. J.4,Töyräs J.13

Affiliation:

1. Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland

2. BioMater Center, University of Kuopio, Kuopio, Finland

3. Department of Physics, University of Kuopio, Finland

4. Department of Biosciences, Applied Biotechnology, University of Kuopio, Kuopio, Finland

Abstract

Background: Contrast agent-enhanced computed tomography may enable the noninvasive quantification of glycosaminoglycan (GAG) content of articular cartilage. It has been reported that penetration of the negatively charged contrast agent ioxaglate (Hexabrix) increases significantly after enzymatic degradation of GAGs. However, it is not known whether spontaneous degradation of articular cartilage can be quantitatively detected with this technique. Purpose: To investigate the diagnostic potential of contrast agent-enhanced cartilage tomography (CECT) in quantification of GAG concentration in normal and spontaneously degenerated articular cartilage by means of clinical peripheral quantitative computed tomography (pQCT). Material and Methods: In this in vitro study, normal and spontaneously degenerated adult bovine cartilage ( n=32) was used. Bovine patellar cartilage samples were immersed in 21 mM contrast agent (Hexabrix) solution for 24 hours at room temperature. After immersion, the samples were scanned with a clinical pQCT instrument. From pQCT images, the contrast agent concentration in superficial as well as in full-thickness cartilage was calculated. Histological and functional integrity of the samples was quantified with histochemical and mechanical reference measurements extracted from our earlier study. Results: Full diffusion of contrast agent into the deep cartilage was found to take over 8 hours. As compared to normal cartilage, a significant increase (11%, P<0.05) in contrast agent concentration was seen in the superficial layer of spontaneously degenerated samples. Significant negative correlations were revealed between the contrast agent concentration and the superficial or full-thickness GAG content of tissue (| R| > 0.5, P<0.01). Further, pQCT could be used to measure the thickness of patellar cartilage. Conclusion: The present results suggest that CECT can be used to diagnose proteoglycan depletion in spontaneously degenerated articular cartilage with a clinical pQCT scanner. Possibly, the in vivo use of clinical pQCT for CECT arthrography of human joints is feasible.

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3