Large-scale cost function learning for path planning using deep inverse reinforcement learning

Author:

Wulfmeier Markus1,Rao Dushyant1,Wang Dominic Zeng1,Ondruska Peter1,Posner Ingmar1

Affiliation:

1. Oxford Robotics Institute, University of Oxford, UK

Abstract

We present an approach for learning spatial traversability maps for driving in complex, urban environments based on an extensive dataset demonstrating the driving behaviour of human experts. The direct end-to-end mapping from raw input data to cost bypasses the effort of manually designing parts of the pipeline, exploits a large number of data samples, and can be framed additionally to refine handcrafted cost maps produced based on manual hand-engineered features. To achieve this, we introduce a maximum-entropy-based, non-linear inverse reinforcement learning (IRL) framework which exploits the capacity of fully convolutional neural networks (FCNs) to represent the cost model underlying driving behaviours. The application of a high-capacity, deep, parametric approach successfully scales to more complex environments and driving behaviours, while at deployment being run-time independent of training dataset size. After benchmarking against state-of-the-art IRL approaches, we focus on demonstrating scalability and performance on an ambitious dataset collected over the course of 1 year including more than 25,000 demonstration trajectories extracted from over 120 km of urban driving. We evaluate the resulting cost representations by showing the advantages over a carefully, manually designed cost map and furthermore demonstrate its robustness towards systematic errors by learning accurate representations even in the presence of calibration perturbations. Importantly, we demonstrate that a manually designed cost map can be refined to more accurately handle corner cases that are scarcely seen in the environment, such as stairs, slopes and underpasses, by further incorporating human priors into the training framework.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3