Dynamic Rolling for a Modular Loop Robot

Author:

Sastra Jimmy1,Chitta Sachin1,Yim Mark1

Affiliation:

1. GRASP Laboratory University of Pennsylvania Philadelphia, Pennsylvania, USA,

Abstract

Reconfigurable modular robots have the ability to use different gaits and configurations to perform various tasks. A rolling gait is the fastest currently implemented gait available for traversal over level ground and shows dramatic improvements in efficiency. In this work, we analyze and implement a sensor-based feedback controller to achieve dynamic rolling for a loop robot. The robot senses its position relative to the ground and changes its shape as it rolls. This shape is such that its center of gravity is maintained to be in front of its contact point with the ground, so in effect the robot is continuously falling and thus accelerates forward. Using simulation and experimental results, we show how the desired shape can be varied to achieve higher terminal velocities. The highest velocity achieved in this work is 26 module lengths per second (1.6 m/s) which is believed to be the fastest gait yet implemented for an untethered modular robot. One of the major findings is that more elongated shapes achieve higher terminal velocities than rounder shapes. We demonstrate that this trend holds going up inclines as well as down. We show that rounder shapes have lower specific resistance and are thus more energy efficient. The control scheme is scalable to an arbitrary number of modules, shown here using eight to 14 modules.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and motion analysis of a new wheeled rolling robot;Mechanical Sciences;2024-07-25

2. How Strong a Kick Should be to Topple Northeastern’s Tumbling Robot?;2024 IEEE International Conference on Advanced Intelligent Mechatronics (AIM);2024-07-15

3. Preliminary Study on the Rolling Locomotion of Variable Topology Truss Robot Using Dynamic Characteristics;2024 2nd International Conference on Mechatronics, Control and Robotics (ICMCR);2024-02-27

4. Envelop-Climbing Locomotion Planning and Capability Analysis of a Deformable Tetrahedron Rolling Robot;IEEE Robotics and Automation Letters;2023-08

5. An Edible Bistable Tilt Sensor Enabling Autonomous Operation of a Partially Eatable Rolling Robot;Advanced Sensor Research;2023-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3